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Abstract

Although the classical lamination theory was developed long time ago, it is still not easy to apply this theory to find
the analytical solutions for the curvilinear boundary value problems especially when the stretching and bending are
coupled each other. To overcome the difficulties, recently we developed a Stroh-like formalism for the general com-
posite laminates. By using this formalism, most of the relations for the coupled stretching—bending problems can be
organized into the forms of Stroh formalism for two-dimensional anisotropic elasticity problems. With this newly
developed Stroh-like formalism, it becomes easier to obtain an analytical solution for the coupled stretching-bending
problems of holes in composite laminates. Because the Stroh-like formalism is a complex variable formalism, the
analytical solutions for the whole field are expressed in complex form. Through the use of some identities derived in this
paper, the resultant forces and moments around the hole boundary are obtained explicitly in real form. Due to the lack
of analytical solutions for the general cases, the comparison is made with the existing analytical solutions for some
special cases. In addition, to show the generality of our analytical solutions, several numerical examples are presented to
discuss the coupling effect of the laminates and the shape effect of the holes.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problems of composite laminates containing holes have been studied extensively for two-
dimensional problems. Although the classical lamination theory was developed long time ago (Jones,
1974), it is not easy to apply this theory to find the analytical solutions for the problems with curvilinear
boundaries, like the hole problems. Even the problems of composite laminates with holes are very
important in engineering applications and have been solved vastly in two-dimensional problems, it is
rarely solved when the laminates make the in-plane and plate bending problems couple each other
subjected to in-plane forces and/or out-of-plane bending moments. Searching for the literature, the only
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related analytical solutions for the plate bending problems are obtained by Lekhnitskii (1938) who
solved the orthotropic plates weakened by a circular hole by using Lekhnitskii’s complex variable
method (Lekhnitskii, 1968). Although Lu and Mahrenholtz (1994) solved the general anisotropic plates
containing a polygon-like hole by using the modified Stroh’s complex variable formalism, the eigen-
relation derived in their paper is not in the form of Stroh formalism and no verification is provided in
their paper. Hsich and Hwu (2002a) solved the anisotropic plate weakened by an elliptical hole by using
the Stroh-like formalism for bending theory of the anisotropic plates (Hwu, in press (a)). However, due
to the restraint of Stroh-like formalism developed in our previous work (Hwu, in press (a)), our previous
results for hole problems (Hsieh and Hwu, 2002a) are only valid for the pure plate bending cases, i.e.,
the laminates must be symmetric to avoid the coupling problems. Strictly speaking, till now no analytical
solutions for the coupled stretching—-bending problems of holes in composite laminates have been found
in the literature. Therefore, it is necessary for us to find a simple, exact and general solution for this
important problem.

Due to the two-dimensional nature, the complex variable method is good for two-dimensional problems.
Among several different complex formalisms, the Stroh formalism (Stroh, 1958; Ting, 1996) has been
proved to be a powerful and elegant formalism for two-dimensional linear anisotropic elasticity. Following
the spirit of Stroh formalism, recently we developed a Stroh-like formalism for the pure plate bending
problems of the anisotropic plates (Hwu, in press (a)) and for the coupled stretching-bending problems of
the composite laminates (Hwu, in press (b)). The former formalism can also be directly applied to the
symmetric composite laminates of which the bending and in-plane deformation are uncoupled, and has
been successfully applied to the holes/cracks/inclusions problems subjected to out-of-plane bending
moments (Hsieh and Hwu, 2002a). Now, we like to apply the latter formalism to deal with the coupled
stretching-bending problems of holes in general composite laminates.

2. Stroh-like formalism for composite laminates

By combining the assumptions for lamination theory, the kinematic relations, the constitutive laws and
the equilibrium equations, the governing equations for the composite laminates can be written in terms of
three unknown mid-plane displacement functions u;, u, and w as (Jones, 1974)
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Bnaaj:lv 33166)?2;2 (312+2B66)%_ 26%0,
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where x;—x,—x; is the commonly used Cartesian coordinate system, ¢ is the lateral distributed load applied
on laminates. 4;;, B;; and D;; are respectively, the extensional, coupling and bending stiffnesses which are
determined by
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in which (ij) . 1s the transformed stiffness of the kth lamina. 4, and A;_; are, respectively, the location of the
bottom and top surfaces of the kth lamina (Fig. 1).

The governing equations (1) involve both in-plane and plate bending problems, i.e., these two problems
are coupled each other if the coupling stiffness B;; are not equal to zero. Due to the mathematical com-
plexity, it is really not easy to find a solution satisfying the governing equations (1) together with the
complicated boundary conditions for the complicated geometrical boundaries by using the conventional
method. Therefore, very few analytical solutions can be found in the literature. Based upon the two-
dimensional nature of the plate bending problems and the powerful and elegant feature of the complex
variable method for two-dimensional problems, recently Hwu (in press (b)) developed a Stroh-like for-
malism for the general composite laminates (symmetric/unsymmetric laminates). In Hwu’s paper (in press
(b)), two different versions of Stroh-like formalism are introduced. One is displacement-based formalism
and the other is mix-based formalism. From the comparison with the Stroh formalism for two-dimensional
problems, Hwu (in press (b)) observed that the displacement-based formalism is alike to the Stroh for-
malism in general solution, whereas the mix-based formalism is alike in the eigen-relation. Therefore, in this
paper, to solve the hole problems, we will use the displacement-based formalism for the general solutions
and the mix-based formalism for the eigen-relation.

According to the displacement-based formalism, the general solutions satisfying the governing equations
(1) with the lateral load ¢ neglected can be written in a compact matrix form as (Hwu, in press (b))

u; = 2Re{Af(z)}, ¢, = 2Re{Bf(2)}, (3a)
where
_Ju _Jo

ud_{B}v d_{\ll}’ (3b)

A= [31 A a3 A3 ]7 B= [bl b2 b3 b4], (30)
Sfi(z1)

f(z) = ﬁgzg . m=xtmrn,  k=1,234, (3d)
f4(Z4)

and
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in which the subscript comma denotes differentiation.
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Fig. 1. Loading and geometry of a composite laminate.

In Eq. (3e), ¢,, i = 1,2, are the stress functions related to the in-plane forces N;;, and y;, i = 1,2, are the
stress functions related to the bending moments A;;, transverse shear forces O; and effective transverse shear
forces V;. Their relations are (Hwu, in press (b))
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Ny = _¢i,2a Np = d)i,l?

My = _'»Df,z - %;“illrbkjm My = ‘//i,l - %’L‘Z‘ﬁk,kv
O = *%‘pk,kz, 0) = %l//k,klv

h= —'»02,227 Vy = l//1,11:

where 4; is the permutation tensor defined as 4;; = A» =0, A = -4y = 1.
The material eigenvalues p, and their associated eigenvectors a, and by are determined from the following
eigen-relation (Hwu, in press (b))

N¢ = Hé? (Sa)
where
N=INI, ¢&= { ; } (5b)
and
N [NON] s Qe BT b 50
L A (LS RS N U
(Nm)l = _Tr;lev (Nm)z = T;ll, (Nm)3 = RmTr;lR; - Qu: (Sd)
I 0 0 0

Note that the material eigenvalues p, have been assumed to be distinct in the general expression (3).
Moreover, the four pairs of material eigenvectors (a;,b;), k = 1,2,3,4, are assumed to be those corres-
ponding to the eigenvalues with positive imaginary parts. For the materials whose eigenvalues are repeated,
a small perturbation in their values may be introduced to avoid the degenerate problems (Hwu, 1991), or a
modification on the general solution can be done (Ting, 1996).

In (5b), N, is the fundamental matrix of the mix-based formalism whose explicit expressions have been
found in (Hsieh and Hwu, 2002b). In (5d), the three 4 x 4 real matrices Q,,, R, and T, are defined as

An A %Em By, 4 4 —Bu _%El()
0 — Ais  Aes  1Bes Be R. — Aes A —Bg —3iBes
= ~ ~ ~ ~ ’ m — ~ ~ ~ ~ )
" %B16 %Béé —%Deé _%DZ() %Béé 5B %Dlé }TD66
By, Bgp —1Dx —Dxn Bo Byn Di 1Dy
Ass A —Bs  —1Bgs
A Ax By —1By
To=| 2 2 ~ RNt (6)
—Bg  —Ba  —Dn —3Die

—%Esé —%Eze _%516 —ibéé
and Z,-j,lf?,z,- and l~),-j are components of the matrices ;1, B and D which are related to the extensional,
bending and coupling stiffness matrices 4, B and D by
A=A-BD'B, B=BD'' D=D" (7)

Note that in the above matrix expressions, the symbols 4 and B have different representations from the
eigenvector matrices A and B defined in (3¢). The former is the traditional notation used in the community
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of mechanics of composite materials, while the latter is the notation generally used in the community of
anisotropic elasticity. To let the readers from both communities see clearly what we express in this paper,
we just use the italic bold-faced fonts to denote the extensional and coupling matrices and the roman bold-
faced fonts to denote the material eigenvector matrices.

As we said previously, in eigen-relation the mix-based formalism is more alike to the Stroh formalism.
Therefore, it is easier to find the explicit expressions for N, by following the steps employed in the Stroh
formalism (Hsieh and Hwu, 2002b). After getting N,,, we can then use the relation provided in (5b); to
obtain the explicit expression of the fundamental matrix N for the displacement-based formalism which are
now listed in Appendix A.

Since the mathematical form of the eigen-relation (5a) and the characteristics of fundamental matrix N
(5¢); are exactly the same as the Stroh formalism for two-dimensional problems (Ting, 1996), all the
identities derived through these relations for Stroh formalism should automatically be transferred to the
present Stroh-like formalism. Hence, without any further derivation, we may now write down the following
identities which have been proved in Stroh formalism for two-dimensional problems (Ting, 1996),

A(g)A " =N, + N,STH! +iNH !,
B(u)A™' =N; + NISTH' +iNJH, (8)
B(i)B™' =NJ —N;SL™' —iN;L™,

where the angular bracket { ) stands for the diagonal matrix; N;, Ny, N3 are the sub-matrix of the fun-

damental matrix N whose explicit expressions are shown in Appendix A, and S, H and L, generally called
Barnett—Lothe tensors in two-dimensional problems, are three real matrices defined as

S=i(2AB" —1), H=2iAA", L= -2iBB". (9)

Like the generalized eigen-relation for the two-dimensional problems (Ting, 1996), the eigen-relation (5)
can be generalized as

N(w)¢ = p(w)¢, (10a)
where
N(w) = ItNm(w)In &= {; }7 (10b)
_ |Ni(®) Niy(w) o) = | Mm(@)); (Nu()),
Ne) = {N3<w> NT(w)]’ Nao(0) = LNm(w)); (No())! |’ (10c)
(Nu(0)); = T, (@R} (®),  (Nn(w)), =T, (o), (10d)

—sinw + pcosw
= - . 10
(o) Cosw + usmw (10¢)
In (10d), Q,,(®), Ry (w) and T, (w) are related to the matrices Q,,, Ry, and T,, defined in (6) by
Q..(») = Q, cos’ w + (R, + RY) sin wcos @ + Ty, sin® o,

Ry (®) = Ry cos’ w 4 (T — Q) sin w cos w — RY sin® o, (11)

T (®) = Ty cos’> o — (R, + RY) sinwcos o + Q,, sin” o,
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in which @ denotes the angle between the transformed and original coordinates such as the angle 8 shown in
Fig. 1.

Using (10) and following the same procedures for the derivation of the identities (8), we can obtain the
useful generalized identities as

A (w)A™" = Ej(0) +iF (o),

By (0))A™" = Es () + iF2(w), (12a)
B( ())B ™" = Es(w) + iF3(w),

where
E () = Nj(0) + Ny(0)STH™',  F(0) = Ny(w)H ™',
E;(w) = N3y(w) + N] (0)STH™',  Fy(w) = N (w)H ', (12b)
E;(w) = N](0) = N3(0)SL™',  F3(w) = —N3(0)L™".

3. Forces, moments and transverse shear forces

In general, one is usually interested in the forces, moments and shear forces around the hole boundary
since most of the critical stress occurs along the hole boundary. To find the forces, moments and transverse
shear forces around the hole boundary, the conventional way is to calculate the forces (Nii, Ny, Ni2),
moments (M, Msy, M,) and transverse shear forces (Q;, 0,) or effective transverse shear forces (7}, /3) by
using their relations with the deflection w, and then use the transformation law to find their values in the
normal and tangent coordinate system, i.e. N,, Ny, N,5, M,,, My, M, O,, Oy, V,, V;. Since in our Stroh-like
formalism for general composite laminates, the final results are expressed in terms of the displacement
vector u; and the stress function vector ¢,, it is hoped that the forces, moments and the transverse shear
forces can be found directly from ¢, instead of using the conventional way.

Like the surface traction for two-dimensional problems, we may now define the surface forces t, and
surface moments m, along the hole boundary with normal n as

(t,); = Nyn;, (m,); = Myn;, (13a)

and the surface forces t, and surface moments m, along the surface perpendicular to the hole boundary with
normal s as

(t);, = Nis;, (my), = Mys;, (13b)
in which
_ o, O Oy o _0xp Ox
nl——sz——sm9——a—a, nz—s1—0050—§—a, (13¢)

where 6 denotes the angle from the positive x;-axis to the direction s in clockwise direction (see Fig. 1).
Substituting (4) into (13a) and (13b), we get

t, = ¢‘sa m, = \Il,s — s,
t, = _¢4n3 m, = _‘Il,n + nn,

where

YERA (14t

(14a)

Ox 1 Ox 2
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The resultant forces and moments in s—» coordinates can therefore be calculated by
N, =n"t,=n"¢,, Ny =s"t, =s"¢,,
N, =s"t,=—s"¢,, Ny =n"t,=-n"¢, = N,,
M, =n"m, =0", M, =s"m,=s"y -,
M, =s"m; = —s"y, My, =n"m; = —n", +n =M,
By the equality of M,, and M,,, we have
n= 1", 0y, (16)

The transverse shear forces and effective transverse shear forces in s—n coordinates can be obtained by
utilizing the transformation laws, (4)s_s, (14) and (15) which can be expressed as

Qn =N, Qs = _’/Ln; (173)
oM, oM,
V;’l = Qﬂ + aSl = (ST‘II;),_W V; = QA‘ + an = _(nT‘l’,n),n’ (17b)

From the above equations, we see that all the forces and moments in s—n coordinates have simple re-
lations with the stress function vector ¢, (= (¢, )").

4. Elliptical holes

Consider an unbounded composite laminate with an elliptical hole subjected to in-plane forces Ny, = NyY,

Ny, = Ns3, Ni» = Njy and out-of-plane bending moments My, = M7}, My, = M35, My, = M3 at infinity (Fig.

2). There is no load around the edge of the elliptical hole. The contour of the elliptical hole is represented by

Ny

Fig. 2. An unsymmetric composite laminate weakened by an elliptical hole subjected to in-plane forces Nj; = NY, Ny = N33, Ni» = Ny
and out-of-plane bending moments M, = My, My = M55, M1, = My.



M. C. Hsieh, C. Hwu | International Journal of Solids and Structures 40 (2003) 3913-3933 3921
X| = acos @, X, = bsin ¢, (18)

where 2a, 2b are the major and minor axes of the ellipse and ¢ is a real parameter. The boundary conditions
of this problem can be expressed as

N =N, Np=Ng,  Np=N3 o
! ! ; at infinity, 19a
My =My, Mp=Mg,  Mp=My, Y (192)

N, =N, =0, M, =V, =0 along the hole boundary. (19b)

By using the displacement function vector u, and stress function vector ¢, introduced in (3b) with their
definitions given in (3e¢) and the relations derived in (4), (15)—(17), the boundary condition (19) can be
expressed in terms of the stress function as

b, = ¢ =xymy —x;m{®  at infinity, (20a)
¢, =0 along the hole boundary, (20b)
where
N]z N]z
My My

The displacement vector u}® corresponding to ¢ for a homogeneous composite laminate may be
obtained from the constitutive laws (Jones, 1974), i.e.,

[ =4t 5 5 2

where
Nip My, & K11
N=S Npyp, M= My, €=%26,p, K={ kn,, (22b)
N1 M, ", K12

and A", B*, D" are related to the extensional, bending and coupling stiffness matrices 4, B and D by
A=A+ A"'BD'BA™', B =-A"'BD*, D'=(D-BA'B)". (23)
From (22a), we get the following relation
me) _[Q RJfdr) _ [d¥) _[Q R|fm
{mgC} {RT T]{d;o Tl T RT T\ mp (24a)

where m{°, m5° are defined in (21) and

«ST; 713/2

o _ ) V52 S

Py T S e 24b

] K11 : K55/2 (240)
K55 /2 K35

The three real matrices Q, R and T which are the counterpart of Q,,, R,, and T,, of the mix-based for-
malism given in (6), are defined as
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An Ais Bu B A A Bis Bn
Q- Asi Ass  Ber  Bes R— Ass As2 Bes Be
By By Di Dy |’ Bis By Dig Di|’
Bsi Bes Ds1 Des Bss Bex Dss Dea
Ass Ae2 Bes Be
T Ay Axn By Bxn . (25)

The pseudo-inverse Q*, R* and T* are then defined by

* 1 g% * 1 px* 1 g% * 1 px* %

Ay, 347 By 3B 347 A, 3Bis B
1 4% 1 4% 1 p* 1 px 1 4% 1 4% 1 p* 1 p*

Q - 3Aie 146 2Ba 2Bes R — s 343 1Bes 2Be

- * 1 px * 1 * ’ - 1 px * 1 * * ’

Bn 5361 D11 §D16 5361 321 §D16 D12
1 p=x 1 px* 1 1 1 p=* 1 px* 1y 1
2B1s iBss 1D16 D% iBss 1B% D D%
1 4% 1 4% 1 p=* 1 p=*
ZAée §A26 ZBee 5362
lA* A* lB* B*
24126 2 2P 22

T — ’ (25b)

1 px* 1 px 1y 1y
71366 EBzé ZD66 §D26

1 p* * 1 *
2 B62 BZZ 2 D26 D22

where 4;;, B}, and D;; are components of the matrices A", B and D" given in (23). Here we use the name
. v . R L
“pseudo-inverse” just because the actual inverse of I?T T does not exist since (m®), = (m5°), = N,

(d7*), = (d5°), = 7975/2 in (24a) will make some identical rows and columns in the matrix L?T ¥], which

will then be singular. By deleting the duplicated rows and columns in (24a) and adding them after inversion,

we can then get the pseudo-inverse Q*, R*and T".
Integration of the second equation of (24a) with respect to x; and x,, respectively, now leads to the results

of uy® as
ll;C = de?o +XQd;C.
In order to satisfy the boundary condition at infinity as shown in (20a), the displacement vector u}® and
the stress function vector ¢ are added to the general solution (3a). Whereas for the satisfaction of the hole
boundary condition, by referring to the solutions of the corresponding two-dimensional problems (Hwu
and Yen, 1992; Hwu, 1992; Hsiech and Hwu, 2002a), we choose

(26)

At vE - @ b 27)
a—1yb

)= 0k =

where k is the unknown coefficient to be determined through the satisfaction of the hole boundary con-
dition. Therefore, the solution for the present problem can be expressed as

u; = uy +2Re{A(g; )k}, (28a)

¢, = b7 +2Re{B(c; )k}, (28b)

where uy, ¢ are given in (26) and (20a), respectively.
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From the knowledge of (Hwu and Yen, 1992; Hwu, 1992; Hsieh and Hwu, 2002a), we know that

¢, =e ' along the hole boundary. (29)

Substituting (28) and (29) into the boundary condition (20b), we obtain

k = —IB'(amy® — ibm®®). (30)

2

The explicit solutions can therefore be expressed as

u =uy — Re{A(g,j)B*](amg" —ibmP®)},

b, = &7 — Re{B(g;")B™' (am3® —ibm()},

which has exactly the same form as those of the corresponding two-dimensional problems (Hwu, 1992) and
pure bending problems (Hsieh and Hwu, 2002a). The only difference is that the symbols like u, ¢, A, B, .. .,
etc. have different dimensions and different contents for different types of problems.

4.1. Forces and moments along the hole boundary

According to the relations obtained in (15)—(17) we know that the calculation of the forces and moments
relies upon the calculation of the differentials ¢, and ¢,,. Again, because our final solutions for ¢, ob-
tained in (31) have exactly the same form as those of the corresponding two-dimensional problems, just by
copying our previous corresponding results (Hwu, 1992; Hsiech and Hwu, 2002a) without any further de-
tailed derivation, we may get

¢, =0, (32a)

b .
b, = — cos 0| m:® + Ex(0)my + 5F3(9)mf°] — sin 0 m3* — Ex(O)m + 2 F>(O)ms] (32b)

where E;(0) and F3(0) are defined in (12b);, which are composed of the fundamental real matrices N;(6), S,
H, and L. If one does not feel comfortable about directly copying the previous corresponding results,
derivation can be done with the help of the references (Hwu, 1992; Hsieh and Hwu, 2002a) and the
identities given in (8) and (12). Substituting (32) into (15), we obtain the forces and moments around the
hole boundary as

Nn:an:Mn:07
. . 1. )
N, = cos 9{6(10) — cc}(f) + 5’%”} + sin 0{050) — —af) — gi”},
c
. 1 33a
M, = cos 0{050) - crf(13> + 0'(21)} + sin 0{6&0) - 70'(23> - Ji”}, (332)
c

. . 1 ~
M,, = cos 0{6'(10) - c&ﬁ” + 6;1)} + sin 0{020) - —653) - ail)},
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where
c=b/a,
¢V =sT(OLm>, 6" =sT(0)L,[NT(6) — N3(0)SL™'Jm>,
6V =sT(OLN; (0L 'm>™,

o/ = s"(0)[,N;(0)L 'm, (33b)
1 - 1 -

6 = 30" (Oham®, 6" = 20" (O)L.NT(6) ~ Ny(O)SL ' Jm,

5" = §"T<0>imN3<9>L*‘m?°7 i=12,

. 1 0 0 O N 0 0 1 O

L= 0l=10 1 ¢ o) ™= T=154 ¢

5. Numerical examples

To show that the explicit solutions obtained in (33) for the forces and moments around the hole
boundary are exact, several examples are illustrated in this section. Not only the resultant forces and
moments around the hole boundary are presented but also the discussion for the coupling effect of the
laminates and the shape effect of the holes are shown in this section. All the examples consider an un-
bounded laminate composed of different combinations of graphite—epoxy fiber-reinforced composite
laminae. The laminate contains a through-thickness elliptical hole. Each lamina thickness is 1 mm, and the
material properties of the graphite/epoxy are

E] =138 GPa, Ez =9 GPa, G|2 =69 GPa, Vi = 03,

where E| and E, are the Young’s moduli in x; and x, directions, respectively; Gy, is the shear modulus in the
x1x; plane; vy, is the major Poisson’s ratio, and has the following relation with the minor Poisson’s ratio v;; as

var1Ep = vipEs. (34)

Example 1. A circular hole in a unidirectional laminate

Consider a [+45]; unidirectional laminate subjected to out-of-plane bending moment M} = . Since the
laminate is composed of the same laminae, the laminate is also a symmetric laminate. According to the
generalized plane stress theory, the stiffness matrix C referred to the principle material directions can be
calculated as

E, v £y 0
1-— V12V21 1-— Vi2V21 138.8 2.72 0
C= V1 E} E, o | = 272 9.05 0 | GPa. (35)
1— Vi2V21 1— V12V21 0 0 6.9
0 0 G,

The transformed stiffness matrix C' of each lamina can then be calculated by the 4th order transfor-
mation law as

C'=QcQ’, (36a)
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where Q is the transformation matrix defined by
cos? 0 sin® 0 —2sinfcos
Q= sin® 0 cos? 0 2sin0cos 0 (36b)
| sinfcos® —sinfcosd cos® O — sin® 0

Substituting (36) into (2), we can obtain the extensional, coupling and bending stiffness matrices as follows:

[135.66 94.26

A= 9426 135.66
| 97.32  97.32
[101.75  70.7

D= | 707 101.75
73.0 73.0

97.32
97.32
106.8
73.0
73.0
80.1

(GPamm), B =0 (GPamm?),

(GPamm?).

With the results obtained in (37) as our basic lamination properties, the forces and moments around
the hole boundary can be calculated from the explicit solutions (33) through the detail flowchart shown in
Fig. 3.

Because the laminate considered in this example is a symmetric laminate, the coupling stiffness matrix B
is identical to zero, and hence the in-plane and plate bending problems are uncoupled. For the plate
bending cases, the solutions have been obtained in (Hsiech and Hwu, 2002a). Table 1 shows that the
moments around the circular hole boundary are identical to our previous results.

Example 2. A circular hole in an unsymmetric laminate
To see the coupling phenomenon, we now consider a [+45/0/+45/-45] unsymmetric laminate. By the way

described in the previous example, we may obtain the extensional, coupling and bending stiffness matrices
as follows:

[274.46 96.98 32.44
A=|9698 14471 3244 | (GPamm),
| 3244 3244 1137
[ 4679 —1435  81.1
B=|-1435 —18.085 81.1 | (GPamm?),
| 811 81.1  —14.35
[272.37 158.01 10.81
D= [15801 229.12 10.81 | (GPamm’).
| 1081 1081 180.3

Fig. 4 shows the forces and moments distribution around the hole boundary under different loading
conditions. From Fig. 4, we see that even the unsymmetric composite laminate is subjected to in-plane
forces only or out-of-plane bending moment only, it will induce both of the bending moments and in-plane
forces around the hole boundary, which is reasonable and expectable due to the existence of the coupling
stiffnesses.

Example 3. Coupling effects of the laminates

The purpose of this example is to show the coupling effects of the anti-symmetric laminates through the
gradual changing of the coupling stiffnesses Bjs and B,s. Consider five different laminates whose extensional
and bending stiffnesses are the same as
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Lamina Properties
EE,,G,.v),

Laminate Construction
6,.6,.00,. 1. by b,

I

l

'

’ Stiffness matrix C (Eq.35) ‘

A

’ Transformed stiffness matrix C' (Eq.36) ‘
|

Laminate stiffnessA, B, D (Eq.2);

ABD, (Eq7): Q,.R,.T,, (Eq.6);

A',B',D" (Eq.(A3))

A 4 Generalized the matrices

{ Matrices A*,B",D" (Eq.23) ‘

' Q,(6).R,,(6).T,(0) (Eq.11)
Fundamental matrices
N, N, N, (Eq.(A1)-(A3))

Applied the in-plane forces Y
and out-of-plane bending
moments at infinity, m;",m>
(Eq.21)

A
Generalized fundamental matrices
N, (6),N,(6),N,(8) (Eq.10(b)-(d))

“ ’ Calculate the eigen-relation (Eq.5)

A
Material eigenvalues 4, (Eq.5);

Material eigenvector matrices A, B (Eq.3(c) & 5);
Barnett-Lothe tensors S, H, L (Eq.9);

Y
o (Eq.20(a)) .
u? (Eq.26, 24(a),, 25(b))
4—{ Hole geometry, a and b -t
Y
General solutions u,,¢, \

for the whole field (Eq.31)

Resultant forces and moments
around the hole boundary (Eq.33)

Fig. 3. Flowchart for the calculation of the deformations and stresses, and the resultant forces and moments around the hole boundary.

[339.34 9699 0

=19699 7984 0 | (GPamm),
0 0 113.71
(45246 12932 0

D= 12932 10642 0 | (GPamm’),
L0 0 15161
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Table 1
Moments around the circular hole boundary of an unidirectional laminate subjected to out-of-plane bending moments M}y = m
Moments Angle(¢p) M, /12 M, /m
Present Hsieh and Hwu (2002b) Present Hsieh and Hwu (2002b)
0° —-0.5477 —0.5476 —-0.2938 —-0.2937
30° —0.5959 —0.5959 0.4760 0.4761
60° —-0.3160 —-0.3160 1.0812 1.0813
90° 0.1602 0.1602 1.3943 1.3944
120° 0.5639 0.5638 1.7809 1.7814
150° 0.7920 0.7922 1.5973 1.5979
180° —-0.5477 —-0.5476 —0.2938 —-0.2937
210° —0.5959 —0.5959 0.4760 0.4761
240° —-0.3160 —-0.3160 1.0812 1.0813
270° 0.1602 0.1602 1.3943 1.3944
300° 0.5639 0.5638 1.7809 1.7814
330° 0.7920 0.7922 1.5973 1.5979

but their coupling stiffnesses are different each other as

Case 1: B = 0 (GPamm?), (symmetric laminates)
Case 2:

0 0 40.52
B= 0 0 15.665 |, (half as Case 3)
40.52 15.665 0

(a) (b) ()

Fig. 4. Force and moment around the circular hole in an unsymmetric composite laminate under different loading conditions:
(a) subjected to Ny = p, (b) subjected to M} = m, and (c) subjected to Niy = p, MY = (m =p x 1).
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Case 3:
0 0
B = 0 0
81.04 31.33
X

81.04

31.33 |, ([-30/+ 30/ — 30/ + 30] anti-symmetric laminates)

0

— N, (case 1)
— — — —-M, (case 2)

I, M (case 2)
I -N, (case 2)

>

—— N, (case 1)
— — — —-M,, (case 4)

e M, (case 4)
e —-N, (case4)

(c)

— N, (case 1)
— — — —-M, (case3)
— == M (case 3)
e —-N, (case3)

——— N, (case )
— = = =M, (case5)
[ M, (case5)
. - NS (case 5)

(d)

o

00 __

Fig. 5. Force and moment distribution around the hole boundaries of five different laminates subjected to in-plane forces NY =

ponly.
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Case 4:
[0 0
B= 0 0
| 162.08  62.66
Case 5:
0 0
B= 0 0
| 4052 156.65
X

RN

_

162.08 |
62.66 |,
0

405.2
156.65

M (case 1)

ns

— — —— M, (casel)
7777777 M, (case 2)

—— — M, (case?)
- - N, (case2)

.
[
=

N\

2

M, (case 1)
— — — - M, (casel)
i M, (case 4)
— — M, (case 4d)
I - N, (case d)

(c)

s

(twice as Case 3)

(five times as Case 3)

M, (case 1)
— — — — M, (casel)
,,,,,,, M, (case 3)
— — M (case3)

. — N, (case3)

S~
(b)
X,
-

M, (case 1)

— —— —-M, (case 1)
7777777 M (case 5)

\ ns
\ ) —— — M, (case5)

— - N, (case5)

(d)

3929

Fig. 6. Force and moment distribution around the hole boundaries of five different laminates subjected to out-of-plane bending

moments MY = m only.
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In order to see the coupling effects more clearly, the in-plane force N{y = p and bending moment My = m
are applied separately in Figs. 5 and 6. Only the in-plane force p is applied for the cases shown in Fig. 5. Thus,
no bending moments can be induced for the symmetric laminates (Case 1), whereas both in-plane resultant
forces and bending moment occur for all the other cases due to the addition of the coupling stiffnesses By
and Bys. Fig. 5(a)—(c) show that the addition of Bs and B, does not influence too much for the values of N,
whereas the gradual increase of M,, and M, due to the gradual increase of Bjs and By is quite obvious. Fig.
5(d) shows that not only the values of N;, M,; and M, increase but also their distribution profile change a lot
for Case 5 when the values of coupling stiffnesses Bis and By are increased to five times of Case 3.

For the cases of the laminates subjected to out-of-plane bending moment MY = s only, similar trend can
be observed in Fig. 6(a)-(d).

Example 4. Shape effects of the holes
Because the solutions obtained in this paper are also valid for general elliptical hole, it is interesting to
know the effects of hole shapes by just changing the ratio of minor axis to major axis. In this example, the

7

1B F bla=5
N/m; bla=s M% r //“72
PE — = — —bla=2 msk bla=
"E I bra=1 | | bla=1
10§— ————bla=1/2 sE ———=bla=1/2
9F ———=bla=1/5 F —e— —bla=1/5
8 4:_
7F g
6E 3F
sE :
E 2
4F F
3F B A I v/ i SRR
E BRI
E L X
25 ,,,,,,,,, *//>
1F of
of/ )’ : g
Bt 1 1

T NI I T TN TN NI NI S SR S .
30 60 90 120 150 180 210 240 270 300 330 360
angle of the hole 0 (degree)

@ (b)

0 30 60 9 120 150 180 210 240 270 300 330 360

angle of the hole ) (degree)

bla=5
— — — —bla=2

L o
17« B R B R

N
S LU UL

T AT T T IR IR NI I [N S I |
30 60 90 120 150 180 210 240 270 300 330 360

angle of the hole 0 (degree)
©

Fig. 7. Force and moment around the elliptical hole in an unsymmetric laminate subjected to NiY = p, MY =m (i =p x 1).
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laminate is considered to be the same as that of Example 2. Fig. 7(a)-(c) show the resultant force N;,
moment M, and twist M, versus hole boundary angle ¢ for five different ratios, b/a = 5, 2, 1, 1/2, 1/5. From
Fig. 7 we see that the maximum values of N,, M, and M, increase as the ratio b/a increases. Moreover, the
maximum values of N, M, and M, will locate at ¢ = 90° and 270° when the ratio b/a > 1, which is
conformable to our engineering intuition. Moreover, when the ratio b/a is getting higher, the elliptical hole
will approach to a crack perpendicular to the applied force p and moment m (2 = p x 1). Therefore, the
maximum values of Ny, M; and M, will approach to infinity as the ratio approaches to infinity. On the other
hand, for the ratio b/a < 1, the location of the maximum values has the tendency, although not quite clear,
to shift to the places near ¢ = 180° and ¢ = 360°, which is also reasonable from the viewpoint of horizontal
crack to be its limiting case.

6. Conclusion

By applying a recent developed Stroh-like formalism for the coupled stretching-bending analysis of
composite laminates, analytical solutions for elliptical holes in laminates subjected to in-plane forces (in-
cluding in-plane shear forces) and/or out-of-plane bending moments (including twisting moments) are ob-
tained explicitly in this paper. Because the Stroh-like formalism has been purposely organized into the form
of Stroh formalism for two-dimensional analysis, the present field solutions have exactly the same form as
those obtained for the two-dimensional problems. It is therefore expected that all the other unsolved coupled
stretching-bending problems can be solved automatically if their corresponding two-dimensional problems
have been solved, such as the inclusion problems (Hwu and Ting, 1989; Hwu and Yen, 1993).

Like the two-dimensional problems, although the field solutions can only be expressed in complex forms
through the use of some identities the resultant forces and moments around the hole boundary have been
obtained in real forms. In addition to the explicit solutions presented in this paper, several numerical ex-
amples are done to verify our results, and to study the coupling effects of the laminates and the shape effects
of the holes. The results are well agree to the existing solutions for the symmetric laminates and the en-
gineering intuition for the unsymmetric laminates.
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Appendix A

The explicit expressions of the fundamental matrix N for the displacement-based formalism can be
expressed as

(X X2 Nz Y Yn Yo 0 Xy
1 [Xa 0 Yy Yy 1Y, Y 0 Xy
Nl = = s NZ = = s
Al O 0 0 Xgu Al O 0o 0 O
_ETQ 0 X3 Xuy| Xy X 0 A},
-D3 0 X3 Xy
1
N=x| O 0 00 ; (A1)
Al X510 0 Y3 Yy
L Xo 0 Yo Yyl
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where
K = EngTz +Z’{15§2»
X :2765§2+§72§22? X = _(ZT15§2+§ngTz)v X :ZTlégz_ZngTz’
X1 :ZszzszETzE;zv Xo4 :ZTll};z_ZTzETza
X3 = §T15§2 - gszsz KNz = _(ZleYz + EflgTz)a
Xy = 2(2}9{6532 - E*{zﬁ%% Kaz = 26532 + EDETW Kag = _2(2le;6 + §T6§T2)7
= 211325 + 226§T§ + 271226532 - ZTébzz - 22?65’{21};2,
Yia = A4},B3, By, + A3 B3 + A7 A3 D3, — 47,416 D3, — 4;,B7,By, — A36ByBsy,
Yis = 4},B}, D}, + Bi3B;, + 47,B;, D3, — 434B; D5, — 43, B, D, — B}, B},B,, (A2)
Yig = 2(4}4B}, D5 + B3Bis + A}, Bi D3, — A;(BioD3, — 4}, B, D3 — B}, Bi(B:,),
Yy = 2717933 + Zﬁzﬁ’f% + 211232532 - 235;2 - 2272§T2§§2a
Yy = 4},B},D}, + B{3B3, + 4}, B3, D3, — 4},B}, D3, — 47,B3, D}, — B} B}, B3,
Yo = 2(4;,B}1,D5 + B3B3 + A7, B3 D3, — 47,81 D3, — ;B3 D5 — Bi,BiB3y),
Yy = 47,D}3 + 2B}, B}, D}, — Bj1D3, — B3Dj, — 47, D}, D3,,
Yy = 2(B},B}sD}, + 47, D}, D3 + B}, B}, D3, — A, DD, — Bi3Djs — B, Bi(Ds,),
Yu = 4(4},D3; + 2B,BiD3, — Bi¢D3, — Bi3Di — 4;,D3, D),

in which

A'=4"', B =-4"'"B, D'=D—-BA'B (A.3)
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