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Abstract

Although the classical lamination theory was developed long time ago, it is still not easy to apply this theory to find

the analytical solutions for the curvilinear boundary value problems especially when the stretching and bending are

coupled each other. To overcome the difficulties, recently we developed a Stroh-like formalism for the general com-

posite laminates. By using this formalism, most of the relations for the coupled stretching–bending problems can be

organized into the forms of Stroh formalism for two-dimensional anisotropic elasticity problems. With this newly

developed Stroh-like formalism, it becomes easier to obtain an analytical solution for the coupled stretching–bending

problems of holes in composite laminates. Because the Stroh-like formalism is a complex variable formalism, the

analytical solutions for the whole field are expressed in complex form. Through the use of some identities derived in this

paper, the resultant forces and moments around the hole boundary are obtained explicitly in real form. Due to the lack

of analytical solutions for the general cases, the comparison is made with the existing analytical solutions for some

special cases. In addition, to show the generality of our analytical solutions, several numerical examples are presented to

discuss the coupling effect of the laminates and the shape effect of the holes.
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1. Introduction

The problems of composite laminates containing holes have been studied extensively for two-

dimensional problems. Although the classical lamination theory was developed long time ago (Jones,

1974), it is not easy to apply this theory to find the analytical solutions for the problems with curvilinear

boundaries, like the hole problems. Even the problems of composite laminates with holes are very

important in engineering applications and have been solved vastly in two-dimensional problems, it is
rarely solved when the laminates make the in-plane and plate bending problems couple each other

subjected to in-plane forces and/or out-of-plane bending moments. Searching for the literature, the only
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related analytical solutions for the plate bending problems are obtained by Lekhnitskii (1938) who

solved the orthotropic plates weakened by a circular hole by using Lekhnitskii�s complex variable

method (Lekhnitskii, 1968). Although Lu and Mahrenholtz (1994) solved the general anisotropic plates

containing a polygon-like hole by using the modified Stroh�s complex variable formalism, the eigen-
relation derived in their paper is not in the form of Stroh formalism and no verification is provided in

their paper. Hsieh and Hwu (2002a) solved the anisotropic plate weakened by an elliptical hole by using

the Stroh-like formalism for bending theory of the anisotropic plates (Hwu, in press (a)). However, due

to the restraint of Stroh-like formalism developed in our previous work (Hwu, in press (a)), our previous

results for hole problems (Hsieh and Hwu, 2002a) are only valid for the pure plate bending cases, i.e.,

the laminates must be symmetric to avoid the coupling problems. Strictly speaking, till now no analytical

solutions for the coupled stretching–bending problems of holes in composite laminates have been found

in the literature. Therefore, it is necessary for us to find a simple, exact and general solution for this
important problem.

Due to the two-dimensional nature, the complex variable method is good for two-dimensional problems.

Among several different complex formalisms, the Stroh formalism (Stroh, 1958; Ting, 1996) has been

proved to be a powerful and elegant formalism for two-dimensional linear anisotropic elasticity. Following

the spirit of Stroh formalism, recently we developed a Stroh-like formalism for the pure plate bending

problems of the anisotropic plates (Hwu, in press (a)) and for the coupled stretching–bending problems of

the composite laminates (Hwu, in press (b)). The former formalism can also be directly applied to the

symmetric composite laminates of which the bending and in-plane deformation are uncoupled, and has
been successfully applied to the holes/cracks/inclusions problems subjected to out-of-plane bending

moments (Hsieh and Hwu, 2002a). Now, we like to apply the latter formalism to deal with the coupled

stretching–bending problems of holes in general composite laminates.

2. Stroh-like formalism for composite laminates

By combining the assumptions for lamination theory, the kinematic relations, the constitutive laws and
the equilibrium equations, the governing equations for the composite laminates can be written in terms of

three unknown mid-plane displacement functions u1, u2 and w as (Jones, 1974)
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where x1–x2–x3 is the commonly used Cartesian coordinate system, q is the lateral distributed load applied

on laminates. Aij, Bij and Dij are respectively, the extensional, coupling and bending stiffnesses which are

determined by

Aij ¼
Xn

k¼1

ðCt
ijÞkðhk � hk�1Þ;

Bij ¼
1

2

Xn

k¼1

ðCt
ijÞkðh2k � h2k�1Þ;

Dij ¼
1

3

Xn

k¼1

ðCt
ijÞkðh3k � h3k�1Þ;

ð2Þ

in which ðCt
ijÞk is the transformed stiffness of the kth lamina. hk and hk�1 are, respectively, the location of the

bottom and top surfaces of the kth lamina (Fig. 1).

The governing equations (1) involve both in-plane and plate bending problems, i.e., these two problems

are coupled each other if the coupling stiffness Bij are not equal to zero. Due to the mathematical com-

plexity, it is really not easy to find a solution satisfying the governing equations (1) together with the
complicated boundary conditions for the complicated geometrical boundaries by using the conventional

method. Therefore, very few analytical solutions can be found in the literature. Based upon the two-

dimensional nature of the plate bending problems and the powerful and elegant feature of the complex

variable method for two-dimensional problems, recently Hwu (in press (b)) developed a Stroh-like for-

malism for the general composite laminates (symmetric/unsymmetric laminates). In Hwu�s paper (in press

(b)), two different versions of Stroh-like formalism are introduced. One is displacement-based formalism

and the other is mix-based formalism. From the comparison with the Stroh formalism for two-dimensional

problems, Hwu (in press (b)) observed that the displacement-based formalism is alike to the Stroh for-
malism in general solution, whereas the mix-based formalism is alike in the eigen-relation. Therefore, in this

paper, to solve the hole problems, we will use the displacement-based formalism for the general solutions

and the mix-based formalism for the eigen-relation.

According to the displacement-based formalism, the general solutions satisfying the governing equations

(1) with the lateral load q neglected can be written in a compact matrix form as (Hwu, in press (b))

ud ¼ 2RefAfðzÞg; /d ¼ 2RefBfðzÞg; ð3aÞ

where

ud ¼
u
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� �
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� �
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in which the subscript comma denotes differentiation.
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In Eq. (3e), /i, i ¼ 1; 2; are the stress functions related to the in-plane forces Nij, and wi, i ¼ 1; 2; are the
stress functions related to the bending momentsMij, transverse shear forces Qi and effective transverse shear

forces Vi . Their relations are (Hwu, in press (b))

Fig. 1. Loading and geometry of a composite laminate.
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Ni1 ¼ �/i;2; Ni2 ¼ /i;1;

Mi1 ¼ �wi;2 � 1
2
ki1wk;k; Mi2 ¼ wi;1 � 1

2
ki2wk;k;

Q1 ¼ �1
2
wk;k2; Q2 ¼ 1

2
wk;k1;

V1 ¼ �w2;22; V2 ¼ w1;11;

ð4Þ

where kij is the permutation tensor defined as k11 ¼ k22 ¼ 0, k12 ¼ �k21 ¼ 1.

The material eigenvalues lk and their associated eigenvectors ak and bk are determined from the following
eigen-relation (Hwu, in press (b))

Nn ¼ ln; ð5aÞ
where

N ¼ ItNmIt; n ¼ a
b

� �
; ð5bÞ

and
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N3 NT
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� �
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� �
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I1 I2
I2 I1

� �
; ð5cÞ
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m R

T
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�1
m ; ðNmÞ3 ¼ RmT

�1
m R

T
m �Qm; ð5dÞ

I1 ¼
I 0

0 0

� �
; I2 ¼

0 0

0 I

� �
: ð5eÞ

Note that the material eigenvalues lk have been assumed to be distinct in the general expression (3).

Moreover, the four pairs of material eigenvectors ðak; bkÞ, k ¼ 1; 2; 3; 4, are assumed to be those corres-

ponding to the eigenvalues with positive imaginary parts. For the materials whose eigenvalues are repeated,

a small perturbation in their values may be introduced to avoid the degenerate problems (Hwu, 1991), or a
modification on the general solution can be done (Ting, 1996).

In (5b), Nm is the fundamental matrix of the mix-based formalism whose explicit expressions have been

found in (Hsieh and Hwu, 2002b). In (5d), the three 4
 4 real matrices Qm, Rm and Tm are defined as

Qm ¼
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1
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2
66664

3
77775; ð6Þ

and eAAij; eBBij and eDDij are components of the matrices eAA, eBB and eDD which are related to the extensional,

bending and coupling stiffness matrices A, B and D by

eAA ¼ A� BD�1B; eBB ¼ BD�1; eDD ¼ D�1: ð7Þ
Note that in the above matrix expressions, the symbols A and B have different representations from the

eigenvector matrices A and B defined in (3c). The former is the traditional notation used in the community
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of mechanics of composite materials, while the latter is the notation generally used in the community of

anisotropic elasticity. To let the readers from both communities see clearly what we express in this paper,

we just use the italic bold-faced fonts to denote the extensional and coupling matrices and the roman bold-

faced fonts to denote the material eigenvector matrices.
As we said previously, in eigen-relation the mix-based formalism is more alike to the Stroh formalism.

Therefore, it is easier to find the explicit expressions for Nm by following the steps employed in the Stroh

formalism (Hsieh and Hwu, 2002b). After getting Nm, we can then use the relation provided in (5b)1 to

obtain the explicit expression of the fundamental matrix N for the displacement-based formalism which are

now listed in Appendix A.

Since the mathematical form of the eigen-relation (5a) and the characteristics of fundamental matrix N

(5c)1 are exactly the same as the Stroh formalism for two-dimensional problems (Ting, 1996), all the

identities derived through these relations for Stroh formalism should automatically be transferred to the
present Stroh-like formalism. Hence, without any further derivation, we may now write down the following

identities which have been proved in Stroh formalism for two-dimensional problems (Ting, 1996),

AhlkiA�1 ¼ N1 þN2S
TH�1 þ iN2H

�1;

BhlkiA�1 ¼ N3 þNT
1S

TH�1 þ iNT
1H

�1;

BhlkiB�1 ¼ NT
1 �N3SL

�1 � iN3L
�1;

ð8Þ

where the angular bracket h i stands for the diagonal matrix; N1, N2, N3 are the sub-matrix of the fun-

damental matrix N whose explicit expressions are shown in Appendix A, and S, H and L, generally called
Barnett–Lothe tensors in two-dimensional problems, are three real matrices defined as

S ¼ ið2ABT � IÞ; H ¼ 2iAAT; L ¼ �2iBBT: ð9Þ
Like the generalized eigen-relation for the two-dimensional problems (Ting, 1996), the eigen-relation (5)

can be generalized as

NðxÞn ¼ lðxÞn; ð10aÞ
where

NðxÞ ¼ ItNmðxÞIt; n ¼ a

b

� �
; ð10bÞ

NðxÞ ¼ N1ðxÞ N2ðxÞ
N3ðxÞ NT

1 ðxÞ

� �
; NmðxÞ ¼ ðNmðxÞÞ1 ðNmðxÞÞ2

ðNmðxÞÞ3 ðNmðxÞÞT1

� �
; ð10cÞ

ðNmðxÞÞ1 ¼ �T�1
m ðxÞRT

mðxÞ; ðNmðxÞÞ2 ¼ T
�1
m ðxÞ;

ðNmðxÞÞ3 ¼ RmðxÞT�1
m ðxÞRT

mðxÞ �QmðxÞ;
ð10dÞ

and

lðxÞ ¼ � sinx þ l cosx
cosx þ l sinx

: ð10eÞ

In (10d), QmðxÞ, RmðxÞ and TmðxÞ are related to the matrices Qm, Rm and Tm defined in (6) by

QmðxÞ ¼ Qm cos2 x þ ðRm þ RT
mÞ sinx cosx þ Tm sin2 x;

RmðxÞ ¼ Rm cos2 x þ ðTm �QmÞ sinx cosx � RT
m sin2 x;

TmðxÞ ¼ Tm cos2 x � ðRm þ RT
mÞ sinx cosx þQm sin2 x;

ð11Þ
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in which x denotes the angle between the transformed and original coordinates such as the angle h shown in

Fig. 1.

Using (10) and following the same procedures for the derivation of the identities (8), we can obtain the

useful generalized identities as

AhlkðxÞiA�1 ¼ E1ðxÞ þ iF1ðxÞ;
BhlkðxÞiA�1 ¼ E2ðxÞ þ iF2ðxÞ;
BhlkðxÞiB�1 ¼ E3ðxÞ þ iF3ðxÞ;

ð12aÞ

where

E1ðxÞ ¼ N1ðxÞ þN2ðxÞSTH�1; F1ðxÞ ¼ N2ðxÞH�1;

E2ðxÞ ¼ N3ðxÞ þNT
1 ðxÞSTH�1; F2ðxÞ ¼ NT

1 ðxÞH�1;

E3ðxÞ ¼ NT
1 ðxÞ �N3ðxÞSL�1; F3ðxÞ ¼ �N3ðxÞL�1:

ð12bÞ

3. Forces, moments and transverse shear forces

In general, one is usually interested in the forces, moments and shear forces around the hole boundary

since most of the critical stress occurs along the hole boundary. To find the forces, moments and transverse

shear forces around the hole boundary, the conventional way is to calculate the forces ðN11;N22;N12Þ,
moments ðM11;M22;M12Þ and transverse shear forces ðQ1;Q2Þ or effective transverse shear forces ðV1; V2Þ by
using their relations with the deflection w, and then use the transformation law to find their values in the

normal and tangent coordinate system, i.e. Nn, Ns, Nns, Mn, Ms, Mns, Qn, Qs, Vn, Vs. Since in our Stroh-like

formalism for general composite laminates, the final results are expressed in terms of the displacement
vector ud and the stress function vector /d , it is hoped that the forces, moments and the transverse shear

forces can be found directly from /d instead of using the conventional way.

Like the surface traction for two-dimensional problems, we may now define the surface forces tn and

surface moments mn along the hole boundary with normal n as

ðtnÞi ¼ Nijnj; ðmnÞi ¼ Mijnj; ð13aÞ
and the surface forces ts and surface moments ms along the surface perpendicular to the hole boundary with

normal s as

ðtsÞi ¼ Nijsj; ðmsÞi ¼ Mijsj; ð13bÞ
in which

n1 ¼ �s2 ¼ � sin h ¼ � ox2
os

¼ ox1
on

; n2 ¼ s1 ¼ cos h ¼ ox1
os

¼ ox2
on

; ð13cÞ

where h denotes the angle from the positive x1-axis to the direction s in clockwise direction (see Fig. 1).

Substituting (4) into (13a) and (13b), we get

tn ¼ /;s; mn ¼ w;s � gs;

ts ¼ �/;n; ms ¼ �w;n þ gn;
ð14aÞ

where

g ¼ 1

2

ow1

ox1

�
þ ow2

ox2

�
: ð14bÞ
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The resultant forces and moments in s–n coordinates can therefore be calculated by

Nn ¼ nTtn ¼ nT/;s; Nns ¼ sTtn ¼ sT/;s;

Ns ¼ sTts ¼ �sT/;n; Nsn ¼ nTts ¼ �nT/;n ¼ Nns;

Mn ¼ nTmn ¼ nTw;s; Mns ¼ sTmn ¼ sTw;s � g;

Ms ¼ sTms ¼ �sTw;n; Msn ¼ nTms ¼ �nTw;n þ g ¼ Mns:

ð15Þ

By the equality of Mns and Msn, we have

g ¼ 1
2
ðsTw;s þ nTw;nÞ: ð16Þ

The transverse shear forces and effective transverse shear forces in s–n coordinates can be obtained by

utilizing the transformation laws, (4)5–8, (14) and (15) which can be expressed as

Qn ¼ g;s; Qs ¼ �g;n; ð17aÞ

Vn ¼ Qn þ
oMns

os
¼ ðsTw;sÞ;s; Vs ¼ Qs þ

oMns

on
¼ �ðnTw;nÞ;n; ð17bÞ

From the above equations, we see that all the forces and moments in s–n coordinates have simple re-

lations with the stress function vector /d ð¼ ð/;wÞTÞ.

4. Elliptical holes

Consider an unbounded composite laminate with an elliptical hole subjected to in-plane forces N11 ¼ N1
11 ,

N22 ¼ N1
22 , N12 ¼ N1

12 and out-of-plane bending moments M11 ¼ M1
11 , M22 ¼ M1

22 , M12 ¼ M1
12 at infinity (Fig.

2). There is no load around the edge of the elliptical hole. The contour of the elliptical hole is represented by

Fig. 2. An unsymmetric composite laminate weakened by an elliptical hole subjected to in-plane forces N11 ¼ N1
11 , N22 ¼ N1

22 , N12 ¼ N1
12

and out-of-plane bending moments M11 ¼ M1
11 , M22 ¼ M1

22 , M12 ¼ M1
12 .
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x1 ¼ a cosu; x2 ¼ b sinu; ð18Þ

where 2a, 2b are the major and minor axes of the ellipse and u is a real parameter. The boundary conditions

of this problem can be expressed as

N11 ¼ N1
11 ; N22 ¼ N1

22 ; N12 ¼ N1
12 ;

M11 ¼ M1
11 ; M22 ¼ M1

22 ; M12 ¼ M1
12 ;

at infinity; ð19aÞ

Nn ¼ Nns ¼ 0; Mn ¼ Vn ¼ 0 along the hole boundary: ð19bÞ

By using the displacement function vector ud and stress function vector /d introduced in (3b) with their
definitions given in (3e) and the relations derived in (4), (15)–(17), the boundary condition (19) can be

expressed in terms of the stress function as

/d ¼ /1
d ¼ x1m1

2 � x2m1
1 at infinity; ð20aÞ

/d ¼ 0 along the hole boundary; ð20bÞ

where

m1
1 ¼

N1
11

N1
12

M1
11

M1
12

8>><
>>:

9>>=
>>;; m1

2 ¼

N1
12

N1
22

M1
12

M1
22

8>><
>>:

9>>=
>>;: ð21Þ

The displacement vector u1d corresponding to /1
d for a homogeneous composite laminate may be

obtained from the constitutive laws (Jones, 1974), i.e.,

N
M

� �
¼ A B

B D

� �
�0
j

� �
) �0

j

� �
¼ A� B�

B� D�

� �
N
M

� �
; ð22aÞ

where

N ¼
N11

N22

N12

8<
:

9=
;; M ¼

M11

M22

M12

8<
:

9=
;; �0 ¼

e011
e022
c012

8<
:

9=
;; j ¼

j11

j22

j12

8<
:

9=
;; ð22bÞ

and A�, B�, D� are related to the extensional, bending and coupling stiffness matrices A, B and D by

A� ¼ A�1 þ A�1BD�BA�1; B� ¼ �A�1BD�; D� ¼ ðD� BA�1BÞ�1
: ð23Þ

From (22a), we get the following relation

m1
1

m1
2

� �
¼ Q R

RT T

� �
d11
d12

� �
) d11

d12

� �
¼ Q� R�

R�T T�

� �
m1

1

m1
2

� �
; ð24aÞ

where m1
1 , m

1
2 are defined in (21) and

d11 ¼

e111
c112=2
j1
11

j1
12=2

8>><
>>:

9>>=
>>;; d12 ¼

c112=2
e122

j1
12=2
j1
22

8>><
>>:

9>>=
>>;: ð24bÞ

The three real matrices Q, R and T which are the counterpart of Qm, Rm and Tm of the mix-based for-

malism given in (6), are defined as
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Q ¼

A11 A16 B11 B16

A61 A66 B61 B66

B11 B16 D11 D16

B61 B66 D61 D66

2
6664

3
7775; R ¼

A16 A12 B16 B12

A66 A62 B66 B62

B16 B12 D16 D12

B66 B62 D66 D62

2
6664

3
7775;

T ¼

A66 A62 B66 B62

A26 A22 B26 B22

B66 B62 D66 D62

B26 B22 D26 D22

2
6664

3
7775: ð25aÞ

The pseudo-inverse Q�, R� and T� are then defined by

Q� ¼

A�
11

1
2
A�
16 B�

11
1
2
B�
16

1
2
A�
16

1
4
A�
66

1
2
B�
61

1
4
B�
66

B�
11

1
2
B�
61 D�

11
1
2
D�

16

1
2
B�
16

1
4
B�
66

1
2
D�

16
1
4
D�

66

2
66664

3
77775; R� ¼

1
2
A�
16 A�

12
1
2
B�
16 B�

12

1
4
A�
66

1
2
A�
26

1
4
B�
66

1
2
B�
62

1
2
B�
61 B�

21
1
2
D�

16 D�
12

1
4
B�
66

1
2
B�
26

1
4
D�

66
1
2
D�

26

2
66664

3
77775;

T� ¼

1
4
A�
66

1
2
A�
26

1
4
B�
66

1
2
B�
62

1
2
A�
26 A�

22
1
2
B�
26 B�

22

1
4
B�
66

1
2
B�
26

1
4
D�

66
1
2
D�

26

1
2
B�
62 B�

22
1
2
D�

26 D�
22

2
66664

3
77775; ð25bÞ

where A�
ij, B

�
ij and D�

ij are components of the matrices A�, B� and D� given in (23). Here we use the name

‘‘pseudo-inverse’’ just because the actual inverse of
Q R

RT T

� �
does not exist since ðm1

1 Þ2 ¼ ðm1
2 Þ1 ¼ N1

12 ,

ðd11 Þ2 ¼ ðd12 Þ1 ¼ c112=2 in (24a) will make some identical rows and columns in the matrix
Q R

RT T

� �
, which

will then be singular. By deleting the duplicated rows and columns in (24a) and adding them after inversion,

we can then get the pseudo-inverse Q�, R�and T�.

Integration of the second equation of (24a) with respect to x1 and x2, respectively, now leads to the results

of u1d as

u1d ¼ x1d
1
1 þ x2d

1
2 : ð26Þ

In order to satisfy the boundary condition at infinity as shown in (20a), the displacement vector u1d and

the stress function vector /1
d are added to the general solution (3a). Whereas for the satisfaction of the hole

boundary condition, by referring to the solutions of the corresponding two-dimensional problems (Hwu

and Yen, 1992; Hwu, 1992; Hsieh and Hwu, 2002a), we choose

fðzÞ ¼ h1�1
k ik; 1k ¼

zk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2k � a2 � l2

kb2
p
a� ilkb

; ð27Þ

where k is the unknown coefficient to be determined through the satisfaction of the hole boundary con-

dition. Therefore, the solution for the present problem can be expressed as

ud ¼ u1d þ 2RefAh1�1
k ikg; ð28aÞ

/d ¼ /1
d þ 2RefBh1�1

k ikg; ð28bÞ

where u1d , /1
d are given in (26) and (20a), respectively.
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From the knowledge of (Hwu and Yen, 1992; Hwu, 1992; Hsieh and Hwu, 2002a), we know that

1k ¼ e�iu along the hole boundary: ð29Þ

Substituting (28) and (29) into the boundary condition (20b), we obtain

k ¼ �1
2
B�1ðam1

2 � ibm1
1 Þ: ð30Þ

The explicit solutions can therefore be expressed as

ud ¼ u1d �RefAh1�1
k iB�1ðam1

2 � ibm1
1 Þg;

/d ¼ /1
d �RefBh1�1

k iB�1ðam1
2 � ibm1

1 Þg;
ð31Þ

which has exactly the same form as those of the corresponding two-dimensional problems (Hwu, 1992) and

pure bending problems (Hsieh and Hwu, 2002a). The only difference is that the symbols like u;/;A;B; . . .,
etc. have different dimensions and different contents for different types of problems.

4.1. Forces and moments along the hole boundary

According to the relations obtained in (15)–(17) we know that the calculation of the forces and moments

relies upon the calculation of the differentials /d;s and /d;n. Again, because our final solutions for /d ob-
tained in (31) have exactly the same form as those of the corresponding two-dimensional problems, just by

copying our previous corresponding results (Hwu, 1992; Hsieh and Hwu, 2002a) without any further de-

tailed derivation, we may get

/d;s ¼ 0; ð32aÞ

/d;n ¼ � cos h m1
1

�
þ E3ðhÞm1

2 þ b
a
F3ðhÞm1

1

�
� sin h m1

2

h
� E3ðhÞm1

1 þ a
b
F3ðhÞm1

2

i
; ð32bÞ

where E3ðhÞ and F3ðhÞ are defined in (12b)3, which are composed of the fundamental real matrices NiðhÞ, S,
H, and L. If one does not feel comfortable about directly copying the previous corresponding results,

derivation can be done with the help of the references (Hwu, 1992; Hsieh and Hwu, 2002a) and the

identities given in (8) and (12). Substituting (32) into (15), we obtain the forces and moments around the
hole boundary as

Nn ¼ Nns ¼ Mn ¼ 0;

Ns ¼ cos h r̂rð0Þ
1

n
� cr̂rð3Þ

1 þ r̂rð1Þ
2

o
þ sin h r̂rð0Þ

2

�
� 1

c
r̂rð3Þ
2 � r̂rð1Þ

1

�
;

Ms ¼ cos h rð0Þ
1

n
� crð3Þ

1 þ rð1Þ
2

o
þ sin h rð0Þ

2

�
� 1

c
rð3Þ
2 � rð1Þ

1

�
;

Mns ¼ cos h ~rrð0Þ
1

n
� c~rrð3Þ

1 þ ~rrð1Þ
2

o
þ sin h ~rrð0Þ

2

�
� 1

c
~rrð3Þ
2 � ~rrð1Þ

1

�
;

ð33aÞ
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where

c ¼ b=a;

r̂rð0Þ
i ¼ sTðhÞÎInm1

i ; r̂rð1Þ
i ¼ sTðhÞÎIn½NT

1 ðhÞ �N3ðhÞSL�1	m1
i ;

r̂rð3Þ
i ¼ sTðhÞÎInN3ðhÞL�1m1

i ;

rð0Þ
i ¼ sTðhÞÎImm1

i ; rð1Þ
i ¼ sTðhÞÎIm½NT

1 ðhÞ �N3ðhÞSL�1	m1
i ;

rð3Þ
i ¼ sTðhÞÎImN3ðhÞL�1m1

i ;

~rrð0Þ
i ¼ 1

2
nTðhÞÎImm1

i ; ~rrð1Þ
i ¼ 1

2
nTðhÞÎIm½NT

1 ðhÞ �N3ðhÞSL�1	m1
i ;

~rrð3Þ
i ¼ 1

2
nTðhÞÎImN3ðhÞL�1m1

i ; i ¼ 1; 2;

ÎIn ¼ ½ I 0 	 ¼
1 0 0 0

0 1 0 0

� �
; ÎIm ¼ ½ 0 I 	 ¼

0 0 1 0

0 0 0 1

� �
:

ð33bÞ

5. Numerical examples

To show that the explicit solutions obtained in (33) for the forces and moments around the hole

boundary are exact, several examples are illustrated in this section. Not only the resultant forces and

moments around the hole boundary are presented but also the discussion for the coupling effect of the

laminates and the shape effect of the holes are shown in this section. All the examples consider an un-

bounded laminate composed of different combinations of graphite–epoxy fiber-reinforced composite

laminae. The laminate contains a through-thickness elliptical hole. Each lamina thickness is 1 mm, and the

material properties of the graphite/epoxy are

E1 ¼ 138 GPa; E2 ¼ 9 GPa; G12 ¼ 6:9 GPa; m12 ¼ 0:3;

where E1 and E2 are the Young�s moduli in x1 and x2 directions, respectively; G12 is the shear modulus in the

x1x2 plane; m12 is the major Poisson�s ratio, and has the following relation with the minor Poisson�s ratio m21 as

m21E1 ¼ m12E2: ð34Þ

Example 1. A circular hole in a unidirectional laminate

Consider a [+45]3 unidirectional laminate subjected to out-of-plane bending moment M1
11 ¼ m̂m. Since the

laminate is composed of the same laminae, the laminate is also a symmetric laminate. According to the

generalized plane stress theory, the stiffness matrix C referred to the principle material directions can be
calculated as

C ¼

E1

1� m12m21

m21E1

1� m12m21
0

m21E1

1� m12m21

E2

1� m12m21
0

0 0 G12

2
66664

3
77775 ¼

138:8 2:72 0

2:72 9:05 0

0 0 6:9

2
4

3
5 GPa: ð35Þ

The transformed stiffness matrix Ct of each lamina can then be calculated by the 4th order transfor-

mation law as

Ct ¼ XCXT; ð36aÞ
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where X is the transformation matrix defined by

X ¼
cos2 h sin2 h �2 sin h cos h
sin2 h cos2 h 2 sin h cos h

sin h cos h � sin h cos h cos2 h � sin2 h

2
4

3
5: ð36bÞ

Substituting (36) into (2), we can obtain the extensional, coupling and bending stiffness matrices as follows:

A ¼
135:66 94:26 97:32

94:26 135:66 97:32

97:32 97:32 106:8

2
64

3
75 ðGPammÞ; B ¼ 0 ðGPamm2Þ;

D ¼
101:75 70:7 73:0

70:7 101:75 73:0

73:0 73:0 80:1

2
64

3
75 ðGPamm3Þ:

ð37Þ

With the results obtained in (37) as our basic lamination properties, the forces and moments around

the hole boundary can be calculated from the explicit solutions (33) through the detail flowchart shown in

Fig. 3.

Because the laminate considered in this example is a symmetric laminate, the coupling stiffness matrix B
is identical to zero, and hence the in-plane and plate bending problems are uncoupled. For the plate

bending cases, the solutions have been obtained in (Hsieh and Hwu, 2002a). Table 1 shows that the

moments around the circular hole boundary are identical to our previous results.

Example 2. A circular hole in an unsymmetric laminate

To see the coupling phenomenon, we now consider a [+45/0/+45/)45] unsymmetric laminate. By the way

described in the previous example, we may obtain the extensional, coupling and bending stiffness matrices

as follows:

A ¼
274:46 96:98 32:44
96:98 144:71 32:44
32:44 32:44 113:7

2
4

3
5 ðGPammÞ;

B ¼
46:79 �14:35 81:1
�14:35 �18:085 81:1
81:1 81:1 �14:35

2
4

3
5 ðGPamm2Þ;

D ¼
272:37 158:01 10:81
158:01 229:12 10:81
10:81 10:81 180:3

2
4

3
5 ðGPamm3Þ:

Fig. 4 shows the forces and moments distribution around the hole boundary under different loading

conditions. From Fig. 4, we see that even the unsymmetric composite laminate is subjected to in-plane

forces only or out-of-plane bending moment only, it will induce both of the bending moments and in-plane

forces around the hole boundary, which is reasonable and expectable due to the existence of the coupling

stiffnesses.

Example 3. Coupling effects of the laminates

The purpose of this example is to show the coupling effects of the anti-symmetric laminates through the
gradual changing of the coupling stiffnesses B16 and B26. Consider five different laminates whose extensional

and bending stiffnesses are the same as
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A ¼
339:34 96:99 0

96:99 79:84 0

0 0 113:71

2
4

3
5 ðGPammÞ;

D ¼
452:46 129:32 0

129:32 106:42 0
0 0 151:61

2
4

3
5 ðGPamm3Þ;

Fig. 3. Flowchart for the calculation of the deformations and stresses, and the resultant forces and moments around the hole boundary.
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but their coupling stiffnesses are different each other as

Case 1: B ¼ 0 (GPamm2), (symmetric laminates)

Case 2:

B ¼
0 0 40:52
0 0 15:665

40:52 15:665 0

2
4

3
5; ðhalf as Case 3Þ

Fig. 4. Force and moment around the circular hole in an unsymmetric composite laminate under different loading conditions:

(a) subjected to N1
11 ¼ p̂p, (b) subjected to M1

11 ¼ m̂m, and (c) subjected to N1
11 ¼ p̂p, M1

11 ¼ m̂m (m̂m ¼ p̂p 
 1).

Table 1

Moments around the circular hole boundary of an unidirectional laminate subjected to out-of-plane bending moments M1
11 ¼ m̂m

Moments Angle(u) Mns=m̂m Ms=m̂m

Present Hsieh and Hwu (2002b) Present Hsieh and Hwu (2002b)

0� )0.5477 )0.5476 )0.2938 )0.2937
30� )0.5959 )0.5959 0.4760 0.4761

60� )0.3160 )0.3160 1.0812 1.0813

90� 0.1602 0.1602 1.3943 1.3944

120� 0.5639 0.5638 1.7809 1.7814

150� 0.7920 0.7922 1.5973 1.5979

180� )0.5477 )0.5476 )0.2938 )0.2937
210� )0.5959 )0.5959 0.4760 0.4761

240� )0.3160 )0.3160 1.0812 1.0813

270� 0.1602 0.1602 1.3943 1.3944

300� 0.5639 0.5638 1.7809 1.7814

330� 0.7920 0.7922 1.5973 1.5979
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Case 3:

B ¼
0 0 81:04
0 0 31:33

81:04 31:33 0

2
4

3
5; ð½�30=þ 30=� 30=þ 30	 anti-symmetric laminatesÞ

Fig. 5. Force and moment distribution around the hole boundaries of five different laminates subjected to in-plane forces N1
11 ¼ p̂p only.
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Case 4:

B ¼
0 0 162:08
0 0 62:66

162:08 62:66 0

2
4

3
5; ðtwice as Case 3Þ

Case 5:

B ¼
0 0 405:2
0 0 156:65

405:2 156:65 0

2
4

3
5: ðfive times as Case 3Þ

Fig. 6. Force and moment distribution around the hole boundaries of five different laminates subjected to out-of-plane bending

moments M1
11 ¼ m̂m only.
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In order to see the coupling effects more clearly, the in-plane force N1
11 ¼ p̂p and bending moment M1

11 ¼ m̂m
are applied separately in Figs. 5 and 6. Only the in-plane force p̂p is applied for the cases shown in Fig. 5. Thus,

no bending moments can be induced for the symmetric laminates (Case 1), whereas both in-plane resultant

forces and bending moment occur for all the other cases due to the addition of the coupling stiffnesses B16

and B26. Fig. 5(a)–(c) show that the addition of B16 and B26 does not influence too much for the values of Ns,

whereas the gradual increase of Mns and Ms due to the gradual increase of B16 and B26 is quite obvious. Fig.

5(d) shows that not only the values of Ns,Mns andMs increase but also their distribution profile change a lot

for Case 5 when the values of coupling stiffnesses B16 and B26 are increased to five times of Case 3.

For the cases of the laminates subjected to out-of-plane bending momentM1
11 ¼ m̂m only, similar trend can

be observed in Fig. 6(a)–(d).

Example 4. Shape effects of the holes
Because the solutions obtained in this paper are also valid for general elliptical hole, it is interesting to

know the effects of hole shapes by just changing the ratio of minor axis to major axis. In this example, the

(a) (b)

(c)

Fig. 7. Force and moment around the elliptical hole in an unsymmetric laminate subjected to N1
11 ¼ p̂p, M1

11 ¼ m̂m (m̂m ¼ p̂p 
 1).

3930 M.C. Hsieh, C. Hwu / International Journal of Solids and Structures 40 (2003) 3913–3933



laminate is considered to be the same as that of Example 2. Fig. 7(a)–(c) show the resultant force Ns,

momentMs and twistMns versus hole boundary angle u for five different ratios, b=a ¼ 5, 2, 1, 1/2, 1/5. From

Fig. 7 we see that the maximum values of Ns, Ms and Mns increase as the ratio b=a increases. Moreover, the

maximum values of Ns, Ms and Mns will locate at u ¼ 90� and 270� when the ratio b=aP 1, which is
conformable to our engineering intuition. Moreover, when the ratio b=a is getting higher, the elliptical hole

will approach to a crack perpendicular to the applied force p̂p and moment m̂m (m̂m ¼ p̂p 
 1). Therefore, the

maximum values of Ns,Ms andMns will approach to infinity as the ratio approaches to infinity. On the other

hand, for the ratio b=a < 1, the location of the maximum values has the tendency, although not quite clear,

to shift to the places near u ¼ 180� and u ¼ 360�, which is also reasonable from the viewpoint of horizontal

crack to be its limiting case.

6. Conclusion

By applying a recent developed Stroh-like formalism for the coupled stretching–bending analysis of

composite laminates, analytical solutions for elliptical holes in laminates subjected to in-plane forces (in-

cluding in-plane shear forces) and/or out-of-plane bending moments (including twisting moments) are ob-

tained explicitly in this paper. Because the Stroh-like formalism has been purposely organized into the form

of Stroh formalism for two-dimensional analysis, the present field solutions have exactly the same form as

those obtained for the two-dimensional problems. It is therefore expected that all the other unsolved coupled
stretching–bending problems can be solved automatically if their corresponding two-dimensional problems

have been solved, such as the inclusion problems (Hwu and Ting, 1989; Hwu and Yen, 1993).

Like the two-dimensional problems, although the field solutions can only be expressed in complex forms

through the use of some identities the resultant forces and moments around the hole boundary have been

obtained in real forms. In addition to the explicit solutions presented in this paper, several numerical ex-

amples are done to verify our results, and to study the coupling effects of the laminates and the shape effects

of the holes. The results are well agree to the existing solutions for the symmetric laminates and the en-

gineering intuition for the unsymmetric laminates.
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Appendix A

The explicit expressions of the fundamental matrix N for the displacement-based formalism can be

expressed as

N1 ¼
1eDD

X11 X12 Y13 Y14
X21 0 Y23 Y24
0 0 0 X43eBB�
12 0 X34 X44

2
6664

3
7775; N2 ¼

1eDD
Y11 Y12 0 X14

Y12 Y22 0 X24

0 0 0 0

X14 X24 0 eAA�
11

2
6664

3
7775;

N3 ¼
1eDD

�eDD�
22 0 X31 X41

0 0 0 0

X31 0 Y33 Y34
X41 0 Y34 Y44

2
6664

3
7775; ðA:1Þ
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where

eDD ¼ eBB�
12
eBB�
12 þ eAA�

11
eDD�

22;

X11 ¼ eAA�
16
eDD�

22 þ eBB�
12
eBB�
62; X12 ¼ �ðeAA�

11
eDD�

22 þ eBB�
12
eBB�
12Þ; X14 ¼ eAA�

11
eBB�
62 � eAA�

16
eBB�
12;

X21 ¼ eAA�
12
eDD�

22 þ eBB�
12
eBB�
22; X24 ¼ eAA�

11
eBB�
22 � eAA�

12
eBB�
12;

X31 ¼ eBB�
11
eDD�

22 � eBB�
12
eDD�

12; X34 ¼ �ðeAA�
11
eDD�

12 þ eBB�
11
eBB�
12Þ;

X41 ¼ 2ðeBB�
16
eDD�

22 � eBB�
12
eDD�

26Þ; X43 ¼ eAA�
11
eDD�

22 þ eBB�
12
eBB�
12; X44 ¼ �2ðeAA�

11
eDD�

26 þ eBB�
16
eBB�
12Þ;

Y11 ¼ eAA�
11
eBB�2
62 þ eAA�

66
eBB�2
12 þ eAA�

11
eAA�
66
eDD�

22 � eAA�2
16
eDD�

22 � 2eAA�
16
eBB�
12
eBB�
62;

Y12 ¼ eAA�
11
eBB�
22
eBB�
62 þ eAA�

26
eBB�2
12 þ eAA�

11
eAA�
26
eDD�

22 � eAA�
12
eAA�
16
eDD�

22 � eAA�
12
eBB�
12
eBB�
62 � eAA�

16
eBB�
12
eBB�
22;

Y13 ¼ eAA�
16
eBB�
12
eDD�

12 þ eBB�2
12
eBB�
61 þ eAA�

11
eBB�
61
eDD�

22 � eAA�
16
eBB�
11
eDD�

22 � eAA�
11
eBB�
62
eDD�

12 � eBB�
11
eBB�
12
eBB�
62;

Y14 ¼ 2ðeAA�
16
eBB�
12
eDD�

26 þ eBB�2
12
eBB�
66 þ eAA�

11
eBB�
66
eDD�

22 � eAA�
16
eBB�
16
eDD�

22 � eAA�
11
eBB�
62
eDD�

26 � eBB�
12
eBB�
16
eBB�
62Þ;

Y22 ¼ eAA�
11
eBB�2
22 þ eAA�

22
eBB�2
12 þ eAA�

11
eAA�
22
eDD�

22 � eAA�2
12
eDD�

22 � 2eAA�
12
eBB�
12
eBB�
22;

Y23 ¼ eAA�
12
eBB�
12
eDD�

12 þ eBB�2
12
eBB�
21 þ eAA�

11
eBB�
21
eDD�

22 � eAA�
12
eBB�
11
eDD�

22 � eAA�
11
eBB�
22
eDD�

12 � eBB�
11
eBB�
12
eBB�
22;

Y24 ¼ 2ðeAA�
12
eBB�
12
eDD�

26 þ eBB�2
12
eBB�
26 þ eAA�

11
eBB�
26
eDD�

22 � eAA�
12
eBB�
16
eDD�

22 � eAA�
11
eBB�
22
eDD�

26 � eBB�
12
eBB�
16
eBB�
22Þ;

Y33 ¼ eAA�
11
eDD�2

12 þ 2eBB�
11
eBB�
12
eDD�

12 � eBB�2
11
eDD�

22 � eBB�2
12
eDD�

11 � eAA�
11
eDD�

11
eDD�

22;

Y34 ¼ 2ðeBB�
12
eBB�
16
eDD�

12 þ eAA�
11
eDD�

12
eDD�

26 þ eBB�
11
eBB�
12
eDD�

26 � eAA�
11
eDD�

16
eDD�

22 � eBB�2
12
eDD�

16 � eBB�
11
eBB�
16
eDD�

22Þ;
Y44 ¼ 4ðeAA�

11
eDD�2

26 þ 2eBB�
12
eBB�
16
eDD�

26 � eBB�2
16
eDD�

22 � eBB�2
12
eDD�

66 � eAA�
11
eDD�

22
eDD�

66Þ;

ðA:2Þ

in which

eAA� ¼ A�1; eBB� ¼ �A�1B; eDD� ¼ D� BA�1B: ðA:3Þ
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